AN EFFICIENT SYNTHESIS OF OPTICALLY ACTIVE +DEMETHOXY ANTHRACYCLINONES Fatima Bennani, Jean-Claude Florent, Michel Koch and Claude Monneret^{*} DEpartement de Fharmacognosie de l'Universit6 Rene Descartes, E.R.A au C.N.R.S n"950, Faculte des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75270 PARIS Cedex 06, France.

Summary : Optically active 4-demethoxy-anthracyclinones were synthezised in few steps from lactose as chiral precursor of ring A and from leucoquinizarine as precursor of rings B, C and D.

The total synthesis of naturally occuring anthracyclines, daunorubicin $\underline{1}$ and adriamycin 2 and of related structural analogs has been the subject of intense studies over the last decade¹. Recent findings indicate that the 4-demethoxy derivative <u>3</u> of daunorubicin <u>1</u> is - 5 to 10 times more potent than 1² and of equi valent efficacy 3 , and that substitution of the acetyl side chain of daunorubicin by a CH₂OH group, as in 4 does not appreciably alter biological activity. $\frac{4}{3}$

 $\mathbf{H} = \mathbf{I}$ 0 **OH BH**

5R zCOCH, $R = CH₂OH$

 $1 R = OCH_3$ $R_1 = COCH_3$ **IR = OCH, R, zCOCHzOH JR:H R,** r **COCH,** $4 R = OCH_3$ $R_1 \approx CH_2OH$

Based upon these observations we have prepared the anthracycline analog 5 $(4$ -demethoxy-9-deacety1-9-hydroxymethyl daunomycinone)⁵ which possesses both these structural modifications. Our objective was to prepare 6 in optically active form by a route which a) avoids the introduction of the hydroxy groups at C-9 and/or at C-7 at a late stage in the synthesis, and b) could be scaled up to a preparative level. For these reasons we chose the readily available and abundant sugar derivative α -**Q**-isosaccharino-1,4-lactone 7 as the precursor of the ring A synthon 11, and leucoquinizarine 15 as the precursor of rings B, C and D.

 α -D-isosaccharino-1,4-lactone 7 was prepared by the reaction of lactose with calcium hydroxyde⁶ and its vicinal diol system was protected as an isopropylidene, giving $\underline{8}^7$. At first, we examined the reductive ring opening of the acetonide 8 by reaction with LAH or BH_7 -Me₂S⁸. Under both conditions the triol 12 was obtained in 94-98 % yield. Unfortunately subsequent acetalation of 12 (acetone-HCl or 2, 2-dimethoxypropane-TsOH-DMF) led to the formation of the two diastereoisomeric di-O-isopropylidenes 13 and 14 in nearly equal proportions. As the quaternary center C-2 (corresponding to C-9 in 6) was essentially racemized during this process⁹, this route was abandoned.

Acetonide 8 was successfully transformed into aldehyde 11 in three steps, 1) Reaction of 8 with Me₂NH in CHC1₃ gave the amido derivative 9 (syrup, (α) _D -27° (c 1, CHCl₃)¹⁰ ; 2) Compound <u>9</u> was converted to its 0-isopropylidene deri-
vative <u>10</u> (syrup, (a)_D-30° (c 1, CHCl₃)); 3) Partial reduction¹¹ of the amide function of 10 with LAH at -40°C gave aldehyde 11 (syrup $(\alpha)_{D}$ -53° (c 1, CHCl₃)) : (overall yield from 8 to $11 \approx 50$ %).

Condensation of compound 11 with leucoquinizarine 15 under Lewis conditions¹² (piperidinium acetate, iPrOH) led to the adduct $\frac{16}{16}$ (m.p. 130°C, hexane-
acetone, (α)_D -70° (c 0.15, dioxane)) in 75 % yield. After acidic hydrolysis (THF-MeOH-H₂O-HCl) of the acetal (98 % yield) regiospecific cleavage of the terminal vicinal diol of tetrol 17 (m.p. 90-92°C, (a)_D +12°5 (c 0.08, dioxane)) was achieved by treating 17 with one molar equivalent of sodium periodate. As deduced from the i.r. and n.m.r. spectra, the aldehydo derivative 18 exists in its hemiacetal form $(m.p. 95-100^{\circ}C, hexane-acetone, (\alpha)_D +78^{\circ} (c 0.05, dioxane)).$

Under Marschalk conditions¹³ (sodium dithionite-NaOH), at room temperature 18 gave exclusively the 7-deoxy anthracyclinone $\frac{19}{1}$ (m.p. 235-238°C, (a)_D -32° $(c 0.06, dioxane))$ ¹⁴ in 80 % yield. However, when this reaction was performed at O°C, two other anthracyclinones were obtained in equal amounts which could be separated by chromatography on silica gel. The trans derivative $7(R)$, 9(S) 20 obtained in 35 % yield was eluted first (m.p. 210-212°, $(\alpha)_{D}$ -108° (c.0.05,THF)) and its structure unambiguously established by n.m.r. and mass spectra¹⁵. Further elution gave the corresponding cis derivative $7(S)$, $9(S)$, 6 in 35 % yield (m.p. 230°C, $(\alpha)_{\text{D}}$ +95° (c 0.05, THF))¹⁶.

Oxidation of the 7-deoxy aglycone (N-chlorosuccinimide-Me₂S-Et₃N)¹⁷ afforded the unstable aldehyde 21 which was immediatly oxidized (sulfamic acid-NaClO₂)¹⁸ into 22 and methylated (Me₂SO₄-K₂CO₃) to give 23 identical in all respects $(m.p., i.r., n.m.r., (\alpha)_n)$ with the $(R)(-)$ Methyl-2-hydroxy-5,12-dimethoxy -6,11-dioxo-1,2,3,4,6,11-hexahydronaphtacene-2 carboxylate as previously described by Terashima et al.¹⁹.

Acknowledgments : We are grateful to CNRS and to Laboratories Hoechst (Paris), for financial support. We also wish to thank Mr.J. Ughetto-Monfrin for valuable technical assistance and Dr. S.K. Kan for access to n.m.r. data at 400 MHz, Institut d'Electronique, Orsay.

References and Notes

- $\mathbf{1}$ For a recent comprehensive review, see : F. Arcamone, "Doxorubicin", Academic Press, New York (1981)
- F. Arcamone, L. Bernardi, P. Giardino, B. Patelli, A. DiMarco, A.M. Casazza, \mathbf{Z} G. Pratesi, and R. Reggiani, Cancer Treatment Report, 60, 829 (1981).
- A.M. Casazza, Cancer Treatment Report, 63, 835 (1979) 3
- $\overline{4}$ S. Penco, F. Angelucci and F. Arcamone, Ger. Offen., 2, 731,306 (Chem. Abstr. 88, 191358x (1978); M.B. Naff, J. Plowman, and V.L. Narayanan in El Khadem, "Anthracycline antibiotics", 1-57, Academic Press, New York (1982).
- 5 For another synthesis of 6, see also : M.J. Broadhurst, C.H. Hassal and G.J. Thomas, Eur. Patent Appl. EP 44,954 (Chem. Abstr., 96, 218189x) (1982).
- R.L. Whistler and J.N. BeMiller, Methods in Carbohydr. Chem., vol. II, 477-6 479, Academic Press, New York (1963) and references cited therein.
- 7 R.L. Whistler and J.N. BeMiller, J. Org. Chem., 26, 2886 (1961) ; S. Hanessian, Tetrahedron Letters, 22, 1005 (1981).
- 8 L.M. Braun, R.A. Braun, H.R. Crissmann, M. Opperman and R.M. Adams, J. Org. Chem., 36, 2388 **(1971).**
- 9 The mechanism of formation of 13 and 14 in acidic medium can be explained as indicated below **:**

- **10** 1.r. and n.m.r. spectra were in agreement with assigned structures as well as analytical and/or mass spectral data.
- 11 The formation of only small amounts $($ \approx 10%) of the corresponding alcohol 13 can be explained by the fact that the reaction sequence is stopped at the amino alcohol stage as already observed with various hindered N,N-disubstituted amides : E. Mosettig, Organ. Reactions, S, 210 (1954).
- 12 C.E. Lewis, J. Org. Chem., 35, 2938 (1970).
- 13 C. Marschalk, J. Koenig and N. Ouroussof, Bull. Chim. Soc. Fr., 1545 (1936) ; C. Marschalk, Ibid, 655 (1939).
- 14 N.m.r. (pyridine-d₅, 400 MHz) : 6 8.39 (2H, m) and 7.75 (2H, m) (ArH) ; 4.09 (2H, s, CH_2O); 3.44 (1H, d) and 3.21 (1H, d) (J = 19, 1-H) ; 3.39-3.11 (4H, m, 4-H and 2 OH) ; 2.30 (lH, m) and 2.08 (lH,m, 3-H). Mass spectrum $(E.I.)$: m/z 340 $(M^+, 100 \text{ s})$; 308 $(M-31, 88 \text{ s})$, and 291 $(M-31-18, 68 \text{ s})$.
- 15 N.m.r. (pyridine-d₅, 400 MHz) :6 8.39 (2H, m) and 7.75 (2H, m) (ArH) ; 5.86 (1H, t, J = J' = 6, 1-H) ; 4.28 (1H, d) and 4.21 (1H, d) (J = 10, 5, CH_2O) ; 3.60 (1H, d) and 3.39 (1H, d)($J = 18$, 4-H); 2.77 (1H, m, $J = 13.5$; $J' = 6$; J"=l , 2e-H) and 2.67 (lH, dd, J = 13.5 ; J'=6.5, 2a-H). Mass spectrum (E.I.) m/z 356 (M+, 20 %), 338 (M-18, 27 %), 320 (M-18-18, 13%),307 (M-18-31, **loo%), 279** (32 %).
- 16 N.m.r.(pyridine-d₅, 400 MHz) : δ 8.37 (2H, m) and 7.73 (2H, m)(ArH); 5.63 (1H, broad s, 1-H), 4.11 (1H, d) and 4.06 (1H, d) (J = 11, CH₂0) ; 3.67 (1H, dd, $J = 18.5$; $J' = 2$, $4a-H$) and 3.24 (1H, d, $J = 18.5$, $4e-H$), 2.72 (1H, m, $J = 14$; $J' = J''=2$, 2e-H) and 2.30 (1H, dd, $J = 14$; $J' = 4.5$, 2a-H). Mass spectrum (E.I.) : m/z 356 (M+, 55 %), 338 **(M-18, 100 %), 320 (M-18-18, 68 %), 307 (M-18-31, 88 %), 279 (60 %).**
- **17** E.J. Corey and C.U. Kim, J. Am. Chem. Sot., 94, 7586 (1972).
- 18 B.O. Lindgren and T. Nilsson, Acta Chim. Scand., 27, 888 (1973).
- 19 S.S. Jew, S. Terashima and K. Koga, Chem. Pharm. Bull., 27, 2351 (1979).

(Received in France 25 May 1984)